パスワードを忘れた? アカウント作成
この議論は賞味期限が切れたので、アーカイブ化されています。 新たにコメントを付けることはできません。

解読に数十万年かかるとされた暗号、148日で解読される」記事へのコメント

  • 解読に必要な時間の期待値は、予測できそうなものですが。

    期待値としてはやはり数十万年で、今回すぐに解読できたのは偶然なのでしょうか?
    (もしそうするなら、どんな勝算があって解読に着手したのかということになりますが)。

    それとも、平均しても100日程度で解読できてしまうものなのでしょうか。

    あるいは、すぐに解読できてしまうということを証明したのだけど学界の大御所が受け入れて
    くれないので、仕方なく実際にやって実証することにしたとか?

    • by Anonymous Coward

      http://scan.netsecurity.ne.jp/article/2012/06/18/29280.html [netsecurity.ne.jp]
      こっちの記事によると解読を大幅に高速化する攻撃方法が発見されて、それを実証したということみたい。
      > 期待値としてはやはり数十万年で、今回すぐに解読できたのは偶然なのでしょうか?
      偶然でそんなことが起きる可能性は確かにゼロではないが、本気で心配してるなら二度と放射脳の連中を笑えないな。

      • by Anonymous Coward

        なぜ放射脳の話に飛躍するのか分からないけど、小さな確率のことでも、起こるときは起こりますよ。

        • 小さな確率のことでも、起こるときは起こりますよ。

          そういう考え方をすると統計学の意味がなくなってしまいます。
          男女の生まれる確率は男性の方が若干高いことが統計的に示されていますが、来年から逆になる可能性もゼロではありません。
          解読に数十万年かかるとされた暗号が148日で解読されたら、偶然ではあり得ない、と考えるのが正しい科学のスタンスなわけです。

          • by Anonymous Coward
            それこそ放射脳の考え方ですね。
            「・」を出そうとサイコロを振って「・」が1回目ででっちゃたのという話です。
            • by Anonymous Coward

              違う。
              「・」を連続で278回出そうとして出ちゃったくらいにあり得ない確率。

              • by Anonymous Coward

                > 「・」を連続で278回出そうとして出ちゃったくらいにあり得ない確率。

                全然違う。

                サイコロの「・」が278回連続して出る確率は、(1/6)^278≒5e-217。

                一方、解読に数十万年(例えば25万年)かかるとされた暗号が148日(約1/2年)で解読される確率は、
                約50万分の1 = 2e-6。

                200桁以上も違います。いいかげんなことを言うものではありません。

              • by Anonymous Coward on 2012年06月20日 0時12分 (#2176865)

                >一方、解読に数十万年(例えば25万年)かかるとされた暗号が148日(約1/2年)で解読される確率は、
                >約50万分の1 = 2e-6。

                解読できるかできないかの確立だから50%じゃないの?

                親コメント
              • by Anonymous Coward

                >解読できるかできないかの確立だから50%じゃないの?

                あー、アリガチな間違いですね。「宝くじは買わないと当たらない。」って思考が、
                いつの間にか「当たる」「外れる」の1/2になっちゃってる患者さんと同じで。

                とりあえず、中学校に入ったら数学の時間でやりますから、そこでお勉強してください。

                #あっ、今はゆとってるから高校にならないとやらないのかな?

開いた括弧は必ず閉じる -- あるプログラマー

処理中...