パスワードを忘れた? アカウント作成
13775346 journal
日記

phasonの日記: ナノメカニカル共振器を用いた超大質量向け質量分析計 1

日記 by phason

"Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators"
S. Dominguez-Medina et al., Science, 362, 918-922 (2018).

今目の前にある試料にはどんな物質が,どれぐらいの比率で含まれているのかを素早く明らかにする事のできる質量分析計は,現代の化学分析において欠く事の出来ない分析機器である.
多くの質量分析計は対象を何らかの手法でイオン化し電場で加速,何らかの手法で質量ごとに分別し,それを何かの方法で検出する,という三段構えの構造となっている.
イオン化部分としては例えばレーザーで強引に電子を引き剥がしたり(レーザーイオン化),イオンを含む液滴に高い電圧をかけ微細な液滴に分断,イオンが大きな分子に付加するなどしてイオン化するエレクトロスプレーイオン化などさまざまな手法がある.
質量ごとに分別する手段としては四重極型の電極に交流電場をかけ,ぐるっとイオンが旋回する周期がちょうど電場の周期と一致する場合のみ安定的にらせん運動して輸送されるという四重極子型,一定の電圧で加速すると重い分子ほど遅くなり,検出器に届く時間が遅れる事を利用したTime-Of-Flight(TOF)型,電場や磁場の存在下での回転半径が速度差により異なる事を利用し,ちょうど検出器に入射する粒子の質量をスキャンする二重収束型など,これまたいくつも存在する.
最後の検出部分は,イオンの衝突を増倍管などで増幅し電流として読み出すものが多い.
これらイオン化法-分析法-検出法の組み合わせにより,実に多種多様な質量分析計が構築され,各手法ごとの特性を活かして精密分析だったり,より大質量の検出だったりを行っている.そんな質量分析計は,より大きな質量を検出できるようにしようと進歩を続けている.
今回報告されたのは,生物系の試料での使用を目指し,分子量が1億(100 MDa)を超えるような超巨大粒子の質量を測定できる質量分析計である.

著者らが用いたのは,MEMS的な構造の一種であるナノメカニカル共振器である.単純に言ってしまえば,極小の振動板のそばに電極を置き,共鳴周波数で振動電場をかける事で安定した振動を起こせる振動子だ.この振動の周期は当然ながら振動板のサイズや重さに依存する.このナノメカニカル共振器の上に重い粒子が乗れば,その影響で振動は遅くなるので,共鳴する交流の振動数も当然ながら小さくなる.この共鳴周波数をモニタする事で,振動子に乗っかったものの重さを求めてやろう,というのが今回の検出器の原理となる.
もっとも,ナノメカニカル共振器を使って質量分析をやろうというのは今回の著者らの専売特許というわけではなく,以前にもいくつかの報告が行われているものだ.ただ今回著者らが作った質量分析計は,対象をより効率的にナノメカニカル共振器に導くような構造となっており,より少量のサンプルで,再現性良く質量を測定できるところが異なっている.

著者らのシステムは,第一弾の噴霧部(サンプル溶液から微小な液滴を飛ばし,分析部まで運ぶ)として,超音波噴霧器(的なもの)やエレクトロスプレーイオン化を用いている.これらは比較的マイルドに巨大分子を飛ばす事が可能であり,生体分子などの分解も少ない.
試料溶液から飛び出た液滴は,レンズの役目を果たす多段の部屋へと導入される.なんと説明したら良いか難しいところだが,いくつかの節のある竹の筒のど真ん中に,貫通する穴を開けたような構造をしている.左端が噴霧された液滴(と気体)の入り口で,右側が真空になっている質量分析部だ.左の小さな穴から入った気体と液滴は,小部屋の中に拡散しながら広がるが,右側(真空側)に抜ける穴も小さいため,最終的にはまた収束しながら右の穴から抜けるような気流が発生する(こんな形→<>→).このとき,進行方向に対し横向きの運動(つまり,粒子の流れから外れて飛び去っていく方向の運動)は気流に巻き込まれる事で抑制されていき,多段の部屋を抜けるごとに次第に一直線のジェットへと変換される.これによって,噴霧部から飛んできた粒子を非常に高効率で検出器に送り出す事が可能となった.
検出部ではナノメカニカル共振器が5×4の20個並んでおり,独立に共鳴振動数が測定されている.何かが降ってくればそれによる振動数の変化を捉え,重さを算出する.粒子の付着による振動数の変化は,粒子が付いた位置とその重さの両方に依存するが,複数の振動モード(今回の場合は2つ)での振動数の変化を全て捉える事で,軸からの距離の違いによる影響と重さによる影響を分離,粒子の重さの情報を精度良く引き出す事ができる.

そんなわけで測定である.
著者らはまず,作成した質量分析計がきちんと動くのか確認するため,粒径のわかっているポリスチレン球を溶液に分散,これを噴霧することで飛ばし,質量分析を行った.飛ばしたポリスチレン球は直径およそ45±3 nm,重さは幅があるが分布の中心が28-36 MDaあたりになると予想されるサンプルだ.なお,溶液中での濃度はおよそ1.7×107粒子/μl(28.2 pM)程度だそうだ.
作成した質量分析計で,2 μl/minの速度で128分間噴霧を続けたところ,検出部でおよそ毎分0.3-1.8ナノ粒子程度,計173イベントを検出した.測定された質量分布の中心は29.5 MDaと粒径から予想される値と良い一致を示し,本質量分析計がきちんと質量を分析できる事を確認できた.見積もり誤差はおよそ1-2%程度と推測されており,今回の測定対象からすると0.3-0.6 MDa程度に相当すると見られる.
この装置の最大の特徴は,前述の流体力学を利用した気体を収束するレンズ構造による効率の高さにある.今回の測定中に噴霧された溶液中に存在していたナノ粒子の数が4.4×109個に対し,検出されたナノ粒子が173と,測定効率はおよそ4×10-8程度になる.数字だけ見ると非常に低そうに思えるが,これまでの類似の装置(ただし,ガスの収束ではなく,通常の質量分析計のようにイオンを電場で収束するタイプ)に比べると6桁程度改善されており,実用的な測定時間(今回の例だと128分)で測定が行える原因となっている.
※著者らも述べているが,単に捕捉効率だけで行けばもっと高い報告例もあるが,それらでは超大面積の検出器群で強引に測定するものであり,コストが非常に高い.

実証試験に成功したので,いよいよ実際の応用が望める生命科学分野のサンプルを用いてのテストに入ろう.
著者らがサンプルに選んだのが,非常にメカニカルな外観からファンも多いバクテリオファージで,こいつの正二十面体型の頭部(カプシド部分)を測定対象に選んでいる.
測定したのは内部を空っぽにしたカプシドと,中に2本鎖DNAが格納された完成形のカプシドの二種類である(多分,脚の部分はなく,カプシド部分のみ).
これらのカプシドの直径は90 nm程度.バクテリオファージのカプシドは決まったタンパク質が決まった個数組み合わさってできているので,これだけ大きな構造体にもかかわらず分子量は厳密に決まっており,空のカプシドで26,018,181(約26 MDa),中にDNAを含んだ状態で105,386,202(約105 MDa)となる.
測定においては,最初は音波での霧化を試みたようだがカプシドが凝集して塊になってしまったため,エレクトロスプレー方式に変更して測定を行っている.

測定結果を見てみよう.空のカプシドは,363イベント測定し,分布の中央は27.2 MDa,最頻値(多分0.5 MDa刻みで分類)は26.0 MDaであり,実際の値である26 MDaと良い一致を示した.また,もう一つの分布の山が33.4 MDa付近(本来の値+7.4 MDa付近)に見られたが,これはカプシドの原料タンパクを精製する過程で残ってしまったDNA断片が内包されたからではないか,と述べている.
中身の詰まったカプシドの方の測定値は,分布の中央が108.4,最頻値が107.5 MDaと,こちらも実際の値である105 MDaとそこそこ良い一致を示したものの,空のカプシドに比べるとやや重いほうにズレている事がわかる.ただ,中身にDNAを含んだカプシドは,調整溶液中の塩類を内部に取り込んだままになりやすい事が知られており,この影響ではないかと著者らは述べている.

まあ何にしろ,100 MDa(分子量1億)以上ぐらいの値を測定できる質量分析計がそれなりに仕事を果たせそうなのは確かである.
ただこれ,何に使ったら良いんですかね.凄いとは思うんですが,生化学分野とかはやった事がないんで,いまいちイメージが掴めないというか…….
近所の研究室がタンパク質とDNAとの複合体のようなものを作って調べているんですが,そういうものの測定には使えるのかも.現在はゲル使った電気泳動で分けて,同時に流すマーカーとの比較から重さを推測してますが,重さを直接測っているわけじゃないので.そういうのが確実に分析できるようになると面白い……のかも?

この議論は賞味期限が切れたので、アーカイブ化されています。 新たにコメントを付けることはできません。
typodupeerror

長期的な見通しやビジョンはあえて持たないようにしてる -- Linus Torvalds

読み込み中...