パスワードを忘れた? アカウント作成
13831135 journal
日記

phasonの日記: 新たなゲル:鍛えるほどに,強くなる 3

日記 by phason

"Mechanoresponsive self-growing hydrogels inspired by nyscle training"
T. Matsuda, R. Kawakami, R. Namba, T. Nakajima and J. P. Gong, Science, 363, 504-508 (2019).

近年,生体の持つ機能や仕組みにインスピレーションを得たさまざまな新規材料の開発が進んでいる.生態系のもつ特徴の一つが,開放系=外界と物質のやり取りをする系であり,傷ついても外界から物質を取り込むことで修復し,さらにはもとよりも成長していくという点である.今回報告された新規ハイドロゲルは,そんな生物の持つ修復・成長プロセスを組み込んだものとなる.

ハイドロゲルとは水となじみやすい部位をもった高分子の網目が,多量の水分子を抱え込んだ状態で固体のようになっているものである.例えばコンニャク,プリン,豆腐などは身近なハイドロゲルであるが,これらの体積の大部分は水分子が占めており,スカスカの網目構造の高分子が水を引き付けることで全体として一つの物体として固まっている.こういったゲルは吸水素材として以外にも,その柔軟性や大きな伸び縮みが可能である点などからシーリング材や衝撃吸収材などとしても広く利用されている.
さてそんなハイドロゲルであるが,強い力で引っ張られたり押しつぶされたりすると,内部の高分子が断裂しその強度は大きく低下,破断の度合いによってはゲル全体が断裂する.近年では自己修復ゲルなども開発されているが,その仕組みは例えば切れた(ように見える)部分でジョイントが外れ,それが押し付けられると再度結合するなどであり,もともとの強度よりも強くなることはない.これに対し今回著者らが目指したのは筋肉のように「負荷によりダメージを受けても,周囲から素材の供給を受けることで初期状態以上に強いゲルへと成長する」というものだ.要するに「鍛えると強くなるゲル」ということになる.

この特異な構造を実現するために著者らが利用したのが,高分子が破断する際に生じるラジカルペアである.ゲルなどの高分子が負荷により破断する場合,高分子鎖内の結合が切れて二つのラジカルに開裂する場合が多い.この時ハイドロゲルが抱え込んでいる水溶液の中に高分子の原料であるモノマーおよび架橋構造を作ることのできる枝分かれ部位をもった分子が十分な量含まれていれば,高分子鎖の破断により生じたラジカルをきっかけとして連鎖的なラジカル重合が発生,新たな高分子鎖が形成される.つまり,
ゲルが引っ張られる → 内部で高分子鎖が破断 → ラジカルが生じる → 局所的に重合が起こる → 負荷がかかった場所では,もともとのゲル以上に多くの高分子鎖が生じてより丈夫なゲルに成長する
となるわけだ.
ただし,通常の「一種類の高分子だけからできているゲル」の場合,その高分子鎖の破断が始まるとゲル全体の破局的な破壊,要するにゲルの切断にまで至ってしまう危険がある.そこで著者らは以前に開発したダブルネットワークゲルと呼ぶ構造を利用した.これは要するに「短くて硬い高分子の網目」と「長くてあちこちがたるんでいる余裕のある柔らかい網目」の二種類のゲルが共存している物質である.強い力が加わると短くて硬い網目が破断するが,ゆったりとした柔らかい網目がゲル全体の構造を保つ,というものだ.これにより「力がかかると内部で高分子の破断が起きつつも,全体構造が保たれるゲル」が実現できる.

「鍛えると成長するゲル」のアイディアを実証するために,まず著者らはダブルネットワークゲルを引き延ばすことでラジカルが本当に発生するのかどうかをチェックしている.酸素が溶け込んでいる水中でラジカルが発生すると,化学反応により過酸化水素が生じる.あらかじめゲル内にFe2+を溶け込ませておくと,過酸化水素によりFe2+が酸化されFe3+となり,これを指示薬で検出することが可能である.この手法により,ゲルを引き延ばすと引き延ばされた部分のみに多くのラジカルが発生していることが確認できた.
ラジカルの発生が確認できたところで,いよいよ「鍛えると強くなるゲル」の実証だ.ゲル全体を「高分子の原料のモノマー&枝分かれ部となる分子が溶けている水」に浸し,この状態のまま負荷をかけて引き延ばす.すると,もともとはゲル中の高分子の比率が10%強だったものが,一度大きく引き伸ばすことで25%以上,つまり倍以上にまで上昇した.狙い通り,引っ張られる(=内部で一部の高分子鎖が断裂する)ことをトリガーに,ゲルの内部で重合反応が進行,ポリマーの量が増大したのだ.強度はどうなっているのかというと,もともと弾性率が0.07 MPa程度だったものが,引っ張ることにより0.7 MPa以上へと10倍以上の強化を見せた.
同様に,原料を含んだ水中で同じ距離を延ばす&縮めるという操作を繰り返すと,強度が次第に増して徐々に伸びにくくなる(鍛えるほどに丈夫になる)という挙動も確認できた.

また,この手法は「ゲルのうち,負荷がかかった一部にのみ別の機能を追加する」という目的にも使用できる.ゲル中に,ゲルの原料の代わりに何らかの機能を発揮する高分子の原料を入れておけば,
負荷がかかった部分の高分子鎖が断裂 → その部分にだけ機能性高分子が新たに発生
となり,局所的に追加の機能を付加できる.論文では,ハンコのような鋳型を押し付け,へこまされた部分にのみ「一定温度以上で水に溶解しなくなって析出する高分子」を追加することで,温度が上がるとその部分だけ色が変わる(微粒子が析出し濁る)であるとか,温度変化で親水性が変わる表面を特定の場所にだけ作り出す,といった例が実証されている.

というわけで,発想自体は面白い「鍛えるほどに強くなるゲル」なのであるが……では,どう使うかというとこれがなかなか難しい.単に強いゲルを作りたいだけなら最初から丈夫なゲルにすればよいだけであって(そのほうがよっぽど強度も高い),負荷がかかった部分のみ強くするというのはどういった目的で使うべきなのやら.しかも,成長させるには原料を含んだ溶液に漬け込んだ状態で負荷をかける必要があるわけで.
負荷のかかった部分にだけ機能を追加,という利用法に関しては,発想次第では化けるかもしれないが,こちらも現状なかなか思い浮かぶものはない.
というわけで,アイディアは面白いが使い道が謎の新技術であった.

この議論は賞味期限が切れたので、アーカイブ化されています。 新たにコメントを付けることはできません。
  • by Anonymous Coward on 2019年02月05日 11時40分 (#3560023)

    新規ハイドロゲルだった小説を妄想。

    • by Anonymous Coward

      そこは「新規ハイドロゲルに転生した俺の効能が凄い」でよろ

  • by Anonymous Coward on 2019年02月05日 20時26分 (#3560297)

    今回ので実現できるか分からないけど、負荷がかかった部分が自動的に強化されて、複雑な形状なのに強度が完全に均質な何かとか。
    フィードバック制御で強度が一定に保たれるような感じで。

typodupeerror

192.168.0.1は、私が使っている IPアドレスですので勝手に使わないでください --- ある通りすがり

読み込み中...