パスワードを忘れた? アカウント作成
15621097 journal
日記

phasonの日記: 今週見た論文

日記 by phason

今週号のNatureとScienceで気になった論文3つ.
(年度初めで忙しくて熟読はできない……)

1. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE
著者多数, Nature, 604, 53-58 (2022).

CUOREによるニュートリノのマヨラナ性の探索に関する論文.
ニュートリノというのはおかしな粒子で,尋常ではなく軽い(しかしゼロではない)質量をもっている.ゼロならそれで問題なかったのだが,ニュートリノだけが(ゼロではなく)他の粒子に比べ格段に低い質量をもっている,という特殊性を(非常に極端な条件設定など無しで)説明するのは非常に難しい.それをうまく説明できる一つの解決策がシーソー機構と呼ばれるものである.

シーソー機構では,もともと(高エネルギーの対称性の高い状態)ではニュートリノも普通の粒子程度の質量をもつと考え,それが低エネルギーに落ちるときの対称性の破れにより「めっちゃ軽い粒子と,めっちゃ重い粒子に分離した」(ような感じ)と考える.
こうすると,「本来の粒子の重さ」(これは,重くなった方と軽くなったほうの両者の質量の積のようなもの)は「当たり前の重さ」に保ったまま,実際に観測されるニュートリノ(全て左巻き.一方,観測される反ニュートリノはすべて右巻き)が異常に軽いことを自然に説明できる優れたモデルである.
(片方が重くなるほどもう一方が逆に軽くなるので,シーソー機構と呼ばれる)
これを実現するにはマヨラナ質量項というものを入れてやるとよいのだが,これは同時に「粒子と反粒子が同じもの」という粒子(マヨラナ粒子)だという意味になる.
※このような粒子は,ニュートリノ以外の素粒子ではあり得ない.電荷をもつので,反粒子では電荷が反転して必ず別な粒子になってしまう.電荷をもたないニュートリノだからこそ許される.

ニュートリノ(軽くて,左巻きスピン)は(非常に小さいが)質量をもつため,速度は必ず光速以下になる.ということは,それを追い越す座標系が必ず存在する.追い越す存在から見ると,ニュートリノはスピンの向きが同じまま進む向きが逆になるので,それは反ニュートリノ(軽くて,右巻きスピン)に見えるだろう(これは,粒子と反粒子が同じものだというマヨラナ粒子だから起こることである.そうでないなら,粒子と反粒子に何かしら違うところがあるので,追い越したからと言って反粒子にはなれない).これをきちんとした物理の見方では「ニュートリノは,わずかとはいえ反ニュートリノとの混合状態とみなせる」と書くことができる.
これにより,物質中で発生したニュートリノは,(ごくわずかな成分ではあるが)反ニュートリノとして働くこともできる.
さらに,ニュートリノがマヨラナ粒子だとすると,レプトン数(=電子などのレプトンとその反粒子の数の差)を保存しない過程が可能になることが知られている.でもってさらにレプトン数の非保存からはバリオン数(=陽子などのバリオンとその反粒子の数の差)の非保存が導ける.すると,「この宇宙ってなんで反物質より通常物質の方が多いの?理論的には両者がペアで同じ数出るんでしょ?」という疑問の答えも出るかもしれない,と言われている.

そんなわけで,ニュートリノがマヨラナ粒子なのかそうではないただのディラック粒子なのかは重要な問題なわけだが,ではそれをどうやって検出するのか,というのが問題である.
その手法として注目されているのが,「二重ベータ崩壊」という核反応の観測だ.
ベータ崩壊は,中性子が陽子に変わりつつ,電子と反ニュートリノをペアで生成する.これが2つ同時に起こるのが二重ベータ崩壊なのだが,標準理論の枠組み内では起きることができるのは「中性子2個が崩壊して,陽子2個と電子2個と反ニュートリノ2個が生じる」という過程だけになる.
ところがニュートリノがマヨラナ粒子だったとすると,標準模型ではありえない「中性子2個が崩壊して,陽子2個と電子2個と反ニュートリノ2個が生じるが,生じた反ニュートリノのうち1つを普通のニュートリノとして扱って,こいつがもう一方の反ニュートリノと対消滅して消える」という過程が可能となる(マヨラナ粒子であれば,あるわりあいで粒子を反粒子をみなすことができる).
二重ベータ崩壊はごく一部の核種のみが起こすことが知られている(ただし確率はその他の核反応に比べものすごく低い).そこで,そういった核種を大量に集め,できるだけ低温に冷やしてノイズを減らし,ニュートリノレスな二重ベータ崩壊が起こるかどうか,ということを調べることにより,ニュートリノがどの程度マヨラナ質量をもつのか(=どの程度粒子と反粒子が混ざった感じなのか)を知ることが可能になる.

このような目的では例えば神岡の地下に作られた,Xeを使ったXMASSやCaを使ったCANDLESとかあるのだが,今回報告されたのは130Teを使ったCUOREである.
こいつがまたえらい装置で,5 cm角のTeO2を988個ぶら下げたトータル742 kg以上の塊全体を,12ミリケルビンぐらいの低温にして検出するという低温工学の化け物みたいな装置である.しかも通常時の温度揺らぎは0.2%という恒温っぷり.ちなみに装置の心臓部(TeO2のブロック)は
https://newscenter.lbl.gov/2017/10/23/cuore-provides-deeper-look-neutrinos/
にある
https://newscenter.lbl.gov/wp-content/uploads/sites/2/2017/10/CUORE_assembly_clean_room.jpg
が見やすい.これを12 mKってのはすごいもんだ.極低温系をやったことのある人からすれば考えるのも嫌になるような測定装置である.
しかも何がすごいって,この装置,この状態で3年だか4年だか稼働し続けた(し続けてる?)のである.
(地震等の際にスパイク状に温度が数ミリケルビン不安定化することもあるが,全体としては非常に安定している)

ではその実験の結果がどうだったのかというと,まあ,この手の装置の話を知っている方は予想できるかもしれないが,現在までに目的としたニュートリノレスの二重ベータ崩壊は確認できていない.
(ということは,理論に対する制限がさらに厳しくなった,ということではある)

そんなわけで,論文の内容というよりは,「根性入れて作った低温技術凄いな……」というものであった.

2. High-precision measurement of the W boson mass with the CDF II detector
著者多数, Science, 376, 170-176 (2022).

ここからは概要だけ.
こちらはCDF IIでとりためたWボソンの質量の測定結果を気合入れて解析したところ,標準模型での予測値からズレていることが分かった,というもの.これまでの他の実験よりかなりエラーバーが小さくなり,確かに標準模型からズレているようには見える.統計的に7σらしいんで,結構著者たち的には確証あるぞという感じなのだろうが,この手の報告はあとから「装置の問題でした」とか「もうちょっと詳しく調べたらやっぱり一致していました」などもあるので,世界の他のグループの追加実験待ちだろう.
とは言え素粒子系の物理学者達が標準模型を破るような実験結果を渇望してはや幾年,そろそろそういった実験結果が出てきてほしいところでもあるので,この結果が正しいといいなあ.

3. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors
S. S. Cheema et al., Nature, 604, 65-71 (2022).
※著者がアメリカの有名どころの大学やら国立研究所やら(あとなぜかインド)に加え,SK HynixにSamsungにIntelと商売敵がまとめて共著に入っていてなんだかすごい.

最後は実用側のものを一つ.半導体素子における次世代のゲート絶縁膜材料に関する研究.
トランジスタの小型化・高速化に伴い,ゲート絶縁膜をどんどん薄くする必要がある.ところが絶縁膜を薄く削りすぎると今度はトンネル電流などによるリーク電流が増えたり,エッチングで削る際のばらつきで素子の特性にばらつきが出るなど望ましくない.
そこで導入されたのがHigh-κ(高誘電率)材料である.誘電率が高ければ,同じ電圧をかけても素子部分への影響が大きくなるわけで,それは逆を返せばより分厚い絶縁膜で同じ動作を実現できる,ということになる.このためふたたび絶縁層を分厚くすることができ,半導体の集積度をさらに上げ続けることができたのは皆さんご存じの通り.
(最初にIntelがHfO2使うと言い出した時には,「Hfなんてそんな元素使うのかよ……」と衝撃だったもんである)

そんなわけで順調に(?)来たわけだが,微細化が進むにしたがってHfO2でもさらに絶縁層を薄くする必要が出てきて,またまた限界が見え始めてしまった.
そんなわけで現在ではHfO2よりもさらに誘電率の高い材料が探索されており,強誘電HfO2の利用などがいろいろ研究されている.
この論文では,以下の図に示すような「強誘電HfO2(単層?)で反強誘電のZrO2をサンドイッチした誘電膜」で非常に良い特性が得られた,と報告されている.
https://www.nature.com/articles/s41586-022-04425-6/figures/4

この材料を使うと,Si表面の酸化膜層を一切エッチングしなくても(=それだけ絶縁層が厚くても),現在のHfO2利用のものよりもより良い特性が出たよ,ということらしい.
材料的にも,すでに使っているHfO2とほぼ同様の手法で作れそうだし,半導体素子の微細化はもう少しは続けられそうか?

この議論は賞味期限が切れたので、アーカイブ化されています。 新たにコメントを付けることはできません。
typodupeerror

日本発のオープンソースソフトウェアは42件 -- ある官僚

読み込み中...