アカウント名:
パスワード:
空冷よりも効率がいいのは分かりましたが、冷水を使った場合との比較はどうなのでしょうか。
CPUの冷却だけを考えれば温水より冷水の方が効率がいいに決まってると思うんだけど、暖まった水を冷却するための熱交換器の消費電力を考えると、全体での(消費電力あたりの)冷却効率は温水を使ったの方が高くなるのでしょうか?
便乗で初歩的な質問なのですが、
定常状態では、CPU→冷却水の熱流束(時間あたりの熱の移動量)と、冷却水→どこか(周辺環境とか)の熱流束とは等しいはずですよね。冷却水→どこか、の熱交換は、どうやってるのでしょうか。どんな方法であれ、それは実現できているのですから、その同じ冷却方法をCPUに対して直接行った方が効率がいいような気がするのですが。
冷却水→どこかは,普通にラジエターを使っているのでしょう.元記事にその記述はありませんでしたが,当然そうするはずです.そのための高温冷媒ですから.
なぜ,直接CPUを空冷出来ないかというと,空気という媒体の熱伝達率の低さがネックです.同じ熱流束を与えようとすると大量の空気流+広い面積が必要となって,現実的ではなくなるでしょう.強力なブロワを動かす電気代も莫迦にならない.
この辺は,ホンダをはじめいくつかの自動車メーカーが「空冷」にこだわって結局は諦めた歴史を思い出させます.ポルシェの911しかり,スズキの「油冷」も結局水冷には勝てなかった.
今回の技術のポイントは,温度の高い冷媒を使い,従来と変わらない熱伝達率を達成した,ということです.そのために,ΔTが小さくなった分をチップと冷媒の接触面積を増やすことで補っています.それがマイクロチャネルクーラーで,半導体レーザーなどでは枯れた技術です.
結果として,室温空気で冷却可能な高温冷媒で動作するスーパーコンピューターができた,と.
冷却水→どこか、で、最終的には空気に持って行かないといけないんだけど、そこではラジエーターを使える(空気という媒体の熱伝達率の低さを面積でカバーできる)からOKというわけですね。
水は流体なので好きな形に変形できて面積をいくらでも広くできる、というところがミソというわけか。ということは、CPUを液体で作れば...
# それなんてT-1000
## ラジエーター型CPUでもいいかも。
流体を使う事のメリットは、熱の移動が簡単にできることですよ。流体は普通、ポンプなどで強制循環させて使いますよね?また、面積を広くとれるとか言う事はあまり関係がありません。
流体と言うより特に水ですが、もう一つのメリットとして気化熱を利用する事ができる点があります。1%の水が蒸発すると6℃温度が下がります。
移動したって、けっきょくは循環して戻ってくるのですから、それだけでは意味をなしませんよ。
ポンプで冷却水をまわしても、その冷却水の持つ熱を逃がすところがなければ、冷却水全体が元のCPUの温度と同じになった時点で終了です。
直感的には、そんなことにはなりそうにないですが、それは、冷却水の熱がいろんなところ(配管を通して周辺とか、ラジエーターを通して空気とか)に逃げてるからであって、それは配管やラジエーターの面積が広いことと関係あります。もし冷却水の配管全体を(CPUと接している部分以外を)断熱材でくるんでしまったらどうなるか、考えてみれば分かると思います。
面積が広くとれるから流体を使うのだ、と言う解釈は間違いだという話であって、ラジエータが広い方がいいのは流体だろうが固体だろうがそれは変わりませんよね。
面積が広いラジエータ(CPUのすぐ近傍に設置するのは困難)まで熱を移動するために流体を使っている、と言えばいいでしょうか。
より多くのコメントがこの議論にあるかもしれませんが、JavaScriptが有効ではない環境を使用している場合、クラシックなコメントシステム(D1)に設定を変更する必要があります。
犯人は巨人ファンでA型で眼鏡をかけている -- あるハッカー
冷水との比較 (スコア:0)
空冷よりも効率がいいのは分かりましたが、冷水を使った場合との比較はどうなのでしょうか。
CPUの冷却だけを考えれば温水より冷水の方が効率がいいに決まってると思うんだけど、
暖まった水を冷却するための熱交換器の消費電力を考えると、全体での(消費電力あたりの)
冷却効率は温水を使ったの方が高くなるのでしょうか?
Re: (スコア:0)
便乗で初歩的な質問なのですが、
定常状態では、CPU→冷却水の熱流束(時間あたりの熱の移動量)と、冷却水→どこか(周辺環境とか)の熱流束とは等しいはずですよね。
冷却水→どこか、の熱交換は、どうやってるのでしょうか。
どんな方法であれ、それは実現できているのですから、
その同じ冷却方法をCPUに対して直接行った方が効率がいいような気がするのですが。
Re:冷水との比較 (スコア:5, 参考になる)
冷却水→どこかは,普通にラジエターを使っているのでしょう.元記事にその記述はありませんでしたが,
当然そうするはずです.そのための高温冷媒ですから.
なぜ,直接CPUを空冷出来ないかというと,空気という媒体の熱伝達率の低さがネックです.同じ
熱流束を与えようとすると大量の空気流+広い面積が必要となって,現実的ではなくなるでしょう.
強力なブロワを動かす電気代も莫迦にならない.
この辺は,ホンダをはじめいくつかの自動車メーカーが「空冷」にこだわって結局は諦めた歴史
を思い出させます.ポルシェの911しかり,スズキの「油冷」も結局水冷には勝てなかった.
今回の技術のポイントは,温度の高い冷媒を使い,従来と変わらない熱伝達率を達成した,ということ
です.そのために,ΔTが小さくなった分をチップと冷媒の接触面積を増やすことで補っています.
それがマイクロチャネルクーラーで,半導体レーザーなどでは枯れた技術です.
結果として,室温空気で冷却可能な高温冷媒で動作するスーパーコンピューターができた,と.
Re: (スコア:0)
冷却水→どこか、で、最終的には空気に持って行かないといけないんだけど、
そこではラジエーターを使える(空気という媒体の熱伝達率の低さを面積でカバーできる)からOKというわけですね。
水は流体なので好きな形に変形できて面積をいくらでも広くできる、というところがミソというわけか。
ということは、CPUを液体で作れば...
# それなんてT-1000
## ラジエーター型CPUでもいいかも。
Re:冷水との比較 (スコア:1)
流体を使う事のメリットは、熱の移動が簡単にできることですよ。
流体は普通、ポンプなどで強制循環させて使いますよね?
また、面積を広くとれるとか言う事はあまり関係がありません。
流体と言うより特に水ですが、もう一つのメリットとして気化熱を利用する事ができる点があります。
1%の水が蒸発すると6℃温度が下がります。
Re: (スコア:0)
移動したって、けっきょくは循環して戻ってくるのですから、それだけでは意味をなしませんよ。
ポンプで冷却水をまわしても、その冷却水の持つ熱を逃がすところがなければ、
冷却水全体が元のCPUの温度と同じになった時点で終了です。
直感的には、そんなことにはなりそうにないですが、それは、冷却水の熱が
いろんなところ(配管を通して周辺とか、ラジエーターを通して空気とか)に
逃げてるからであって、それは配管やラジエーターの面積が広いことと関係あります。
もし冷却水の配管全体を(CPUと接している部分以外を)断熱材でくるんでしまったら
どうなるか、考えてみれば分かると思います。
Re: (スコア:0)
面積が広くとれるから流体を使うのだ、と言う解釈は間違いだという話であって、
ラジエータが広い方がいいのは流体だろうが固体だろうがそれは変わりませんよね。
Re: (スコア:0)
面積が広いラジエータ(CPUのすぐ近傍に設置するのは困難)まで
熱を移動するために流体を使っている、と言えばいいでしょうか。