アカウント名:
パスワード:
既存のアンテナは導体と電場の共鳴を使っているが,これだと波長の数分の一程度までしか小型化できない(サイズが小さくなると共鳴点から外れ,急激に感度が落ちる).一方で,アンテナの小型化への要望は強い.そのため,「導体と電場の共鳴」という通常の手法とは別のメカニズムによるアンテナの開発が進められている.その一つの手法として,磁歪(変形させると磁化が変化する.逆に,磁化を変化させると歪む)を示す物質と,ピエゾ素子(電圧をかけると歪む.逆に,歪めると電圧が発生する)を積層したものが最近提唱された.これは単純に言うと,
放射時:ピエゾ素子
感度を落とさずに波長の数分の一以下の効率的なアンテナを作れるというのなら、ぜひダイポール比のゲインを公表してもらいたいものだ#実は既存の小型アンテナよりも少し特性が良い程度というオチがついても驚かない
2.5 GHz用のやつ(直径200 μm)で今回作成したものが-18 dBiなのに対し、同サイズのループアンテナだと-68 dBiだから、このスケールでアンテナ作ろうとすれば50 dB違うよ、だって。まあこんだけ波長とサイズが違ってれば(何せサイズが波長の1/600ぐらい)、古典的なアンテナの感度はとんでもなく低くなるしね。
同サイズ古典アンテナよりは高感度でも限度があるし、MEMSレベルのサイズなら一つの素子内に複数のアンテナ入れたパッケージにしてダイバーシティ技術なんかと複合させるとかがデフォルトになるのかな。
波長以下サイズをみっしり並べてフェイズドアレイとかしたらどうなるんだろう…
より多くのコメントがこの議論にあるかもしれませんが、JavaScriptが有効ではない環境を使用している場合、クラシックなコメントシステム(D1)に設定を変更する必要があります。
ソースを見ろ -- ある4桁UID
ざっくりした説明 (スコア:5, 参考になる)
既存のアンテナは導体と電場の共鳴を使っているが,これだと波長の数分の一程度までしか小型化できない(サイズが小さくなると共鳴点から外れ,急激に感度が落ちる).
一方で,アンテナの小型化への要望は強い.
そのため,「導体と電場の共鳴」という通常の手法とは別のメカニズムによるアンテナの開発が進められている.
その一つの手法として,磁歪(変形させると磁化が変化する.逆に,磁化を変化させると歪む)を示す物質と,ピエゾ素子(電圧をかけると歪む.逆に,歪めると電圧が発生する)を積層したものが最近提唱された.
これは単純に言うと,
放射時:ピエゾ素子
Re: (スコア:0)
感度を落とさずに波長の数分の一以下の効率的なアンテナを作れるというのなら、ぜひダイポール比のゲインを公表してもらいたいものだ
#実は既存の小型アンテナよりも少し特性が良い程度というオチがついても驚かない
Re:ざっくりした説明 (スコア:1)
2.5 GHz用のやつ(直径200 μm)で今回作成したものが-18 dBiなのに対し、同サイズのループアンテナだと-68 dBiだから、このスケールでアンテナ作ろうとすれば50 dB違うよ、だって。
まあこんだけ波長とサイズが違ってれば(何せサイズが波長の1/600ぐらい)、古典的なアンテナの感度はとんでもなく低くなるしね。
Re: (スコア:0)
同サイズ古典アンテナよりは高感度でも限度があるし、MEMSレベルのサイズなら一つの素子内に複数のアンテナ入れたパッケージにしてダイバーシティ技術なんかと複合させるとかがデフォルトになるのかな。
波長以下サイズをみっしり並べてフェイズドアレイとかしたらどうなるんだろう…