From these numerical results, we consider that the CIM is being operated in a partially quantum regime, but we have yet to confirm the quantum behavior of our system experimentally. Moreover, it is also important to clarify experimentally whether the existence of a superposed state in the CIM contributes to better performance in terms of computation time and accuracy. The lower-energy searching process of the CIM occurs during the DOPO phase transition, which is caused by the nonlinear interactions of photons in a PSA with an initial state originating from quantum noise. To the best of our knowledge, it is still an open question whether such a nonlinear phenomenon seeded by quantum noise can be efficiently emulated with a purely classical system, such as special purpose electronics without any quantum effects.
量子コンピュータの定義 (スコア:5, 興味深い)
狭い意味での「量子コンピュータ」は量子アニーリングを含まないので、「量子コンピュータではないものを勝手にそう呼んでいる」という点ではD-Waveも同じ。
一方で「量子コンピュータ」を広い意味で考えれば、既存の量子コンピュータや量子アニーリングと違う新しい仕組みを使っていても、なんらかの量子効果を本質的に使って計算しているのであれば「量子コンピュータ」と呼んで良いのではないかと思う。
そういう意味では、「光パラメトリック発振器(OPO)というレーザーの量子力学的特性」というのが「最適化問題を高速に解く」ことにどのように役に立っているのかがポイントで、Togetterを見てもそこに疑義があるという話になっているように思う。
とにかく「既存の方式と違うからニセモノ」という短絡的な考え方は危険。
論文には量子性があるかわからないと書いてある (スコア:1)
そういう意味では、「光パラメトリック発振器(OPO)というレーザーの量子力学的特性」というのが「最適化問題を高速に解く」ことにどのように役に立っているのかがポイントで、Togetterを見てもそこに疑義があるという話になっているように思う。
疑義のレベルではなく,開発者自ら論文で量子的振る舞いの有効性を否定しているので明らかです.「量子的になるように考えてシステムを作ったけれど,実際に量子的振る舞いをしているかわからないし,量子的なことが問題を解くのに役立っているかもわからない.相転移は量子雑音がもとになっているので量子的な何かがシステムの中で起きているはず.でも証拠はない.」と論文に書いています.ここから,プレスリリースの内容が出てくる理由がわかりませんし,量子的振る舞いが役立っていないことは疑問の余地がないと思います.
あまりにもかけ離れているので,原文である Science の論文 A coherent Ising machine for 2000-node optimization problems の補足資料 [sciencemag.org](無料閲覧可 PDF へのリンクあり)の6ページ目 "Role of quantumness in CIM" 「コヒーレントイジングマシンにおける量子性の役割」から引用します(意訳は文章の裏読みです).
From these numerical results, we consider that the CIM is being operated in a partially quantum regime, but we have yet to confirm the quantum behavior of our system experimentally. Moreover, it is also important to clarify experimentally whether the existence of a superposed state in the CIM contributes to better performance in terms of computation time and accuracy.
The lower-energy searching process of the CIM occurs during the DOPO phase transition, which is caused by the nonlinear interactions of photons in a PSA with an initial state originating from quantum noise. To the best of our knowledge, it is still an open question whether such a nonlinear phenomenon seeded by quantum noise can be efficiently emulated with a purely classical system, such as special purpose electronics without any quantum effects.
参考訳: これらの数値的な結果から,コヒーレントイジングマシンは部分的な量子領域で動作していると我々は考えるが(意訳: 証拠を示すことはできず),このシステムの量子的振る舞いは実験的にまだ確認できないでいる.さらに,コヒーレントイジングマシンにおける状態重ね合わせの存在が,計算時間と解の精度を良くすることに貢献しているかどうかを実験的に明らかにすることも重要である(意訳: わかっていない).
コヒーレントイジングマシンの最小エネルギー探索過程は光発振器の相転移のときに起きている.この相転移は,位相感応型光増幅器の中にある,量子雑音から決まる初期状態を持つ光子同士の非線形相互作用により引き起こされる.我々の知る限り,量子雑音を乱数シード値とした非線形的現象が,まったく量子効果のない特別な目的の電子機器といった,純粋な古典計算システムで模倣できるのかは未解決の問題である(意訳: 純粋な古典計算システムで量子雑音からの非線形相互作用を模倣する方法はまだ知られていないので,相転移が起きているならきっと量子的な何かが起こっているはず.証拠は示せないけど).(参考訳終わり)
また,プレスリリースにある「量子ニューラルネットワーク」について,コヒーレントイジングマシンの研究成果 2017年度 [wordpress.com], 2016年度 [wordpress.com]にある論文のうち無料で閲覧できるものを見てみました(有料の論文は費用が,それより過去の論文は時間がそれぞれ掛かるので未確認です).その限りでは,量子ニューラルネットワークどころか,量子をつけないただのニューラルネットワークであるという説明すら,まったく見つかりませんでした(見つけた方は論文の題名とその部分をご指摘ください).
またこの論文の補足資料の説明(引用部分の後半)から,同じ機能の単純なシステムの実現可能性を指摘しているツイート [twitter.com]があります([2] は上で引用した補足資料です).
計算機屋としての疑問は、FPGAにDRAMのシフトレジスタを接続し、途中に適当な物理乱数回路を入れれば同じものが実現するのではないかということ。([2]によれば、答えはYESだdろう)。何かD-Waveと日立のCMOS Isingマシンの関係を思い起こす。
コヒーレントイジングマシンと同じものがこれで実現する可能性を否定できないのが,この研究の現状です.一般に公開するより,この FPGA+物理乱数回路との比較実験のほうが研究予算の使い道として価値があるように思います.