アカウント名:
パスワード:
対数とって、2で割り、真数に戻してるんでしょうか?
#昔は手計算でルートを開かせられたんだ…#私は覚えていないです。だって電卓あったし…
今回の修正前の挙動については、以下のページに書かれてますね。https://blogs.msdn.microsoft.com/oldnewthing/20160628-00/?p=93765 [microsoft.com]
> 対数とって、2で割り、真数に戻してるんでしょうか?
それで合ってるようです。
>exp(½ ln x)それはそもそも精度的にあんまりよろしくないような…。任意のべき乗根を出す計算ボタンならともかく、「√」のボタンならhttps://cpplover.blogspot.jp/2010/11/blog-post_20.html [blogspot.jp]のようなアルゴリズムもあるし、手計算でやった筆算アルゴリズムを使ってもよさそうだし…。
十進32桁で計算して誤差10^-19というのは結構大きい気がしますが、どのくらいの精度を保証する仕様になってるんでしょうね
>exp(½ ln x)PC-6001の計算の説明でaのn乗がexp(n*log(a))で求めています。とかいあった記憶があります。当時、小学生のときなのでさっぱりわかりませんでしたが…
より多くのコメントがこの議論にあるかもしれませんが、JavaScriptが有効ではない環境を使用している場合、クラシックなコメントシステム(D1)に設定を変更する必要があります。
192.168.0.1は、私が使っている IPアドレスですので勝手に使わないでください --- ある通りすがり
どうしてるんでしょうか? (スコア:0)
対数とって、2で割り、真数に戻してるんでしょうか?
#昔は手計算でルートを開かせられたんだ…
#私は覚えていないです。だって電卓あったし…
Re:どうしてるんでしょうか? (スコア:2, 参考になる)
今回の修正前の挙動については、以下のページに書かれてますね。
https://blogs.msdn.microsoft.com/oldnewthing/20160628-00/?p=93765 [microsoft.com]
> 対数とって、2で割り、真数に戻してるんでしょうか?
それで合ってるようです。
Re: (スコア:0)
>exp(½ ln x)
それはそもそも精度的にあんまりよろしくないような…。
任意のべき乗根を出す計算ボタンならともかく、「√」のボタンなら
https://cpplover.blogspot.jp/2010/11/blog-post_20.html [blogspot.jp]
のようなアルゴリズムもあるし、
手計算でやった筆算アルゴリズムを使ってもよさそうだし…。
Re: (スコア:0)
十進32桁で計算して誤差10^-19というのは結構大きい気がしますが、どのくらいの精度を保証する仕様になってるんでしょうね
Re: (スコア:0)
>exp(½ ln x)
PC-6001の計算の説明でaのn乗がexp(n*log(a))で求めています。とかいあった記憶があります。
当時、小学生のときなのでさっぱりわかりませんでしたが…