route127の日記: この木何の木極端紫外光猪木 6
ラピダス電力スレでEUV光源の話になってた。
よく「スズの蒸気にレーザ照射」とは聞くけど、なんで金属原子にレーザ光当てて極端紫外光が出てくるのか不思議だった。
最近ノーベル物理学賞を受賞したアト秒パルス絡みで紹介されてた解説スライドを見て高次高調波を利用しているところまで分かった。
コメントで出てたコーカム(Paul Corckum)のウルフ賞受賞研究がまさにそれで高強度の赤外レーザ電場で加速された電子が原子に再衝突してるらしい。
アト秒レーザーパルスで、複素数の電子波動関数を可視化。
とかもあったが波動関数の自乗(存在確率)ではなく位相分布が見えるとかいまいち分からん。
やっぱり虚数は実在したんだ!
光学系の反射率70%の数字眉唾だと思ったらkekの和文報にあったMo/Si多層膜の反射率が実際その程度らしい。
もともとEUV光源に使う炭酸ガスレーザが取り出せる光のエネルギが投入エネルギの2割程度らしいのでそれが反射光学系で更に減衰していくのか。
今後光源とか光学材料が良くなって省エネになって行くのだろうか。
というかそもそも北海道にEUV露光装置来るのか?
来ても動かせる人もノウハウもないよな。
まあ過大な電力が投入されることの例えとして挙げられただけか。
しかし台湾TSMCもよく電力つぎ込めるな。
露光装置はASMLだが成膜・洗浄・乾燥はまだ日本メーカが健闘してるというのを聞いてたがKOKUSAI ELECTORIC(旧日立国際電気)が今度上場するとか先月ラジオのニュースで聞いた。
日立造船スレには他に製鉄機械でも圧延部門でシーメンスと合弁したプライムメタルテクノロジーズが載ってたが、
個人的に日立造船と聞くと連鋳機の印象が強い。
こちらも20年以上前にスチールプランテックに合流してしまった。
しかし日立もこれだけバラバラになればふしぎ発見のレギュラー放送終了も順当か。
一時期竹内海南江目当てで見てた気がする。
日立CMのこの木何の木もだいぶご無沙汰だけど聞くとつい「この木なんの木猪木」っつって下唇を上唇の上に重ねて猪木のモノマネしたくなる。
猪木映画も見に行きたい。
アト秒レーザーとは別 (スコア:1)
EUV光源の原理はアト秒レーザーとは別だったはず.
アト秒レーザーはパルス幅を狭くしないといけないのでトリッキーな現象を使用しているけど,EUVの光源はパルス幅は広くて良いからもっと輝度の高い光源が必要なので,集光したパルスレーザーで加熱した数十万度ぐらい?(確か)のプラズマを使用していたかと思います.要するに,(非常に温度が高いことを除けば)単なる黒体輻射です.
Re:アト秒レーザーとは別 (スコア:1)
>単なる黒体輻射
レーザプラズマ光源は黒体輻射なんですかね?
特異的に13~14nm波長を出す為にターゲットにスズを使っていると理解してるのでレーザプラズマ光源が黒体輻射とは思いませんでした。
書いてる本によってレーザ照射の描像が違うけど『半導体戦争 [diamond.co.jp]』だと1回目のレーザでスズの液滴を粉砕して云々あって2回照射している風だったけれども単なるプラズマ光源なら2回照射する必要ない気がする。
パルスレーザの繰り返し照射を誤解してるのか?
確かにターゲットの描写もプラズマ核融合学会誌 [jspf.or.jp]だと
とあってその辺から既に違う。
Re:アト秒レーザーとは別 (スコア:1)
細かいところまでは把握していなかったので,せっかくの機会ということでいくつか文献見てみました.
>特異的に13~14nm波長を出す為にターゲットにスズを使っていると理解してるので
プラズマの単なる熱輻射ではあるが,どの波長が出やすいかは励起準位などの分布に依存する.このため,13 nm前後に対応する準位の多いスズを用いると効率が高い,ということのようです.
(理想的な黒体輻射と実際の物体の輻射の違い,というのと同じ話のようです)
>単なるプラズマ光源なら2回照射する必要ない気がする。
こちらに関しては,単発のパルスで強烈なレーザーを照射しても吸収効率が悪く,プラズマの生成・加熱に回る熱が少ないので,最初の一発目でいい感じのサイズに粉砕して本パルスを吸収しやすいクラスターサイズに変換,そこに本パルスを照射することで効率を上げる,という感じのようです.
Re:アト秒レーザーとは別 (スコア:1)
>最初の一発目でいい感じのサイズに粉砕
最初から細かい液滴出すと冷えて固体になってしまうんだろうか。
液滴を粉砕してから液滴(球体?赤血球型?)が冷え切る前に表面エネルギ以上のレーザ入力で粉砕するなんてできるのか疑わしくなってきた。
Re:アト秒レーザーとは別 (スコア:1)
>最初から細かい液滴出すと冷えて固体になってしまうんだろうか。
液滴というか,気化した状態に近いです.
液滴を熱衝撃波で粉砕して気化させて,そこに次弾を打ち込む感じで.
※なぜ最初から気化した金属ガスを使わないのかというと原子密度が低いからですね.ある程度大きい体積を確保して吸収効率を上げつつ,いわゆるガスレベルに拡散する前を狙うことで密度が高くなり吸光度も高い.
>液滴を粉砕してから液滴(球体?赤血球型?)が冷え切る前に表面エネルギ以上のレーザ入力で粉砕するなんてできるのか疑わしくなってきた。
そっちは余裕です.
それこそ腐るほど行われているピコ・フェムト分光なんかでは後発パルスのディレイをピコ秒・フェムト秒レベルで制御できるわけで,EUV光源のダブルパルス法におけるディレイ(1 μsぐらい)はどうとでもなるかと.
※極短時間のディレイならミラー位置ずらすとかの光路長の制御でできますし(光路長をミリ単位でずらすとピコ秒単位でディレイを変えられる),μsレベルなら電子回路レベルでもディレイを設定できるんじゃないかなあ.
Re:アト秒レーザーとは別 (スコア:1)
>気化した状態に近いです.
プラズマ一歩手前までレーザで追い込んでとどめのレーザでプラズマ化する、みたいな印象だけど雰囲気を整えてるとはいえ金属の嵩密度や電離がそんなに自在に制御されていることに感情が追いつかない。
>余裕です.
>光路長の制御
理屈としては分かるけど乗用車のドアミラーみたくDCモータで鏡動かしてるんじゃ間に合わないだろうし、民生用映写機のDMDみたいなMEMSデバイス [gopira.jp]なんだろうか。
これまで投影光学系でやってきたのが反射光学系になってその辺も新しく開発したんだろうか。
科博の露光装置の系統化調査 [kahaku.go.jp]でも反射光学系まで扱ってなかった。