パスワードを忘れた? アカウント作成

njtさんのトモダチの日記。 アナウンス:スラドとOSDNは受け入れ先を募集中です。

16679356 journal
日記

witchの日記: ついったーちゃんはおしまい? 2

日記 by witch

もうダメなのかなぁ……
「ツイートデータ収集目的のスクレイピングが酷いのでアクセス制限」って、APIの価格を釣り上げた反動のように思うし、
さらに有料APIからフォロー・フォロワーの取得機能をなくしたことで、API使っていた人達もスクレイピングするしかない状況に追いやっている気が。

サービスにログインしない状態で外部からツイートを見られることが、Twitterを選ぶ理由の一つだったのに。

16616186 journal
日記

h-fujitaの日記: [日常] 久しぶりに書いてみよう

日記 by h-fujita

2010年代、SNS中心になってしまった日記
もういちど、ここにも書いてみよう
へらす部と、すきー部と、無線部と、他にはなにがあるかな。。。

16490735 journal
日記

phasonの日記: 高効率での水の光分解 5

日記 by phason

"Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting"
P. Zhou et al., Nature, 613, 66-70 (2023).

気が付くと10か月ぶりの日記である.忙しかったとはいえ,ずいぶんとまあ書かなかったものだ.
(論文自体は読んでるし面白いものもあるのだが,こうやってまとめるには時間が取れないとなかなか難しい)

エネルギー問題や環境問題の観点から,再生可能エネルギー等の有効活用が注目されるようになって久しい.そのような中で多くの研究が行われているものの一つが,水素の活用である.水素自体は燃焼時に水のみを生成するエネルギー源であるため,「安価かつ低環境負荷で水素を量産する手段があれば」次世代エネルギーの候補になると言えよう.
※実際には,貯蔵・輸送などでも多くの技術革新が必要であり,そちらでもさまざまな研究がおこなわれている.

さて,そんな水素の生成手段のひとつに,太陽光と光触媒の組み合わせによる水の光分解がある.水の分解には理論的には最低で1.23 eV程度のエネルギー(光の波長で言うと1000 nm程度)が必要なので,光励起によりこれよりも高いエネルギーをもつ電子-正孔ペアを作ることができれば水を分解できる可能性がある.要するに,バンドギャップが1.23 eVよりも大きな半導体材料に光を当て,価電子帯の電子を(1.23 eVよりも大きなバンドギャップの上の)伝導帯に励起することで,水を光分解できるかもしれない,というわけだ.この「光触媒による水の分解(=酸素と水素の生成)」はおよそ50年前に日本で発見され,本多・藤嶋効果と呼ばれ今では広く知られている.
光触媒による水の分解は,水中に触媒を入れ太陽光を当てておくだけで勝手に水素が発生し,しかも駆動部分もないので壊れにくく低コストと,水素の発生手段として当時かなり注目された.

ではこれで水素が安価にバンバン作れるようになったかというと,話はそううまくは進まなかった.
例えば光触媒での水の分解には,下記のような問題がある.

・各過程でロスがあったりするので実際にはもっと大きなバンドギャップが必要になる
・かといってバンドギャップが大きすぎる材料だと,利用できる太陽光の波長範囲が狭い
(バンドギャップを超えて電子を励起しないといけないので,バンドギャップが大きいほどエネルギーが高い短波長の光しか励起に使えない)
・光励起で生成された電子と正孔が再結合しないようにうまくキャリア分離できるような構造にしないと,せっかく生成した電子-正孔がそのまま再結合して消えてしまう

こういった多くの問題が合わさるため,光触媒による水の分解はかなり効率が悪い.例えば初期の本多・藤嶋らによる実験でのエネルギー効率はわずか0.4%程度に過ぎず,太陽光のエネルギーのほとんどが利用できていなかった.
※余談ではあるが,植物による光合成のエネルギー効率(降り注ぐ太陽光のエネルギーの何%を化学エネルギーに変換できるか)はわずか1%程度と同じぐらい低い.

とは言え,水の光分解に可能性が詰まっていることもまた確かである.なにせより高効率な触媒を開発できれば,「そこらに転がしておくだけで水素がバンバン出てくる板」が実現できるわけだ.そんなわけで水の光分解は今でもそれなりに研究がおこなわれているのだが,今回の論文は「条件をうまいこと調整したらエネルギー効率9%を実現できたよ」というものになる.

今回の論文で用いられた光触媒は,InGaN/GaNのナノワイヤーである.GaNは近年LEDやACアダプタ向けの半導体材料として実用化が進んでいるが,AlやInを混ぜることでバンドギャップの大きさを広い範囲で自由にコントロールできることが知られている.このため狭いバンドギャップで比較的広い波長範囲の光を利用できる光触媒としての報告が増えている材料である.さらに助触媒を適切に選択し,ナノ構造化などを組み合わせて表面でのバンド構造の変化をうまく組み合わせると,かなり高い水の光分解効率が得られることが報告されている.
今回の論文では,Siウェハー上にGaNとInGaNをCVDにより交互に積層していくことで,GaNとInGaNが交互に柱状に積みあがったナノワイヤーが成長する(Extended Data Fig. 5c~e).ワイヤー径はおおよそ100~200 nm程度,長さは1 μm前後といったところか.InGaN/GaNにより,おおよそ400~700 nmの波長域の光を利用して水を分解することができる.そしてこのナノワイヤーの表面に,助触媒としてRh/Cr2O3/Co3O4のナノ粒子を付ける.

そして今回の論文の最大のポイントが,温度である.温度を上げると反応速度の向上などにより効率が上がる.ただし温度が上がりすぎると,生成した水素と酸素が触媒の効果で逆反応を起こし水に戻る反応も進んでしまうので,逆に効率が低下する.今回の光触媒で検討したところ,温度が70 ℃までは効率が単調に増加し,80 ℃で横ばいもしくはやや低下したので,実験は70 ℃で行っている.
と言っても,別途ヒーターで加熱するわけではない.触媒と水の入った容器を外部からある程度断熱してやることで熱がこもるようにし,これにより温度を上げるわけだ.言ってみれば,光触媒が利用できない長波長の赤外線を,装置全体を加熱して反応効率を上げるのに利用してやっている,ということになる.装置の構成はExtended Data Fig. 3(集光なしでの,Xeランプ&波長フィルタを使った模擬太陽光での実験)およびExtended Data Fig. 8(フレネルレンズによる集光を用いた屋外での実地試験)を参照していただきたい.
※集光すると,触媒面積が少なくて良いのでコストが安い.また,効率が上がることも多い.

そんなわけで実際の光による水素の発生の様子である.これはもう,屋外実地試験での動画を見ていただくのが早いだろう.まずは光触媒を用いない場合の動画を見ていただこう.この場合,発生しているのは太陽光により一部が沸騰している水蒸気の泡であり,水素が発生しているわけではない.

触媒なしでの動画
(太陽光がまぶしいので,見やすくするためにフィルター越しの映像)

これに対し,光触媒を入れたときの動画がこれである.

触媒ありでの動画
(こちらもフィルター越しの映像)
触媒ありでの動画
(フィルターなしの映像と,装置の全景.レンズなどの配置が良くわかる)

見てわかる通り,ぼこぼことなかなかすごい勢いで水素(と酸素)が発生している.
この分野の研究はあまり追っていなかったのだが,なんとまあずいぶんな勢いで水素が出るものである.
どの程度のエネルギー効率だったのかというと,実験室系で精製水&Xeランプ+波長フィルタの模擬太陽光を用いた実験でエネルギー効率9.2%,屋外&集光ありで通常の水道水を用いた場合が7.4%,同じく屋外&海水をそのまま使った場合でも6.6%の変換効率が得られている.海水のような不純物を多く含む水であってもいけるという面では,かなり利用はしやすそうではある.

もう一つ気になるのは,耐久性だ.触媒分野でよく用いられるturnover number(1つの活性点が失活するまでに,何回反応を回せるか)は44,000ほど(ちなみに,単位時間あたりに何回反応が回るか,というturnover frequencyは601 h-1).非常に少ない,というわけではないが,長期間放置して使い続けるにはちょっと厳しい.この劣化の原因であるが,反応後の触媒のICPでの分析などから,助触媒であるRh/Cr2O3/Co3O4の溶出であるとみられている.InGaN/GaNナノワイヤーには顕著な劣化はなさそうだったので,より良い安定性の高い助触媒が見つかれば,実用化が進む可能性もある.

というわけで,「温度を上げてやったら,水の光分解効率が劇的に上がったよ」という報告であった.

16399789 journal
日記

witchの日記: 「師走」 生きてます

日記 by witch

「この仕事が終わったらワクチン接種受けるんだ」
なんてフラグ立てていたら、あっさりコロナに感染して寝込こみました。(10月)
2ヶ月くらい調子悪かったけど、ようやく元の状態に戻った感じ。

4月に3回目の接種受けた時、2週間くらい調子悪かったから、仕事が片付いたら……と先延ばししていたらこんなことに。

治って良かった。

来年は少し仕事が楽になるので、ロボ制作の時間を作れる……はず。

---
2022年の日記エントリが零件になるの回避

15621097 journal
日記

phasonの日記: 今週見た論文

日記 by phason

今週号のNatureとScienceで気になった論文3つ.
(年度初めで忙しくて熟読はできない……)

1. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE
著者多数, Nature, 604, 53-58 (2022).

CUOREによるニュートリノのマヨラナ性の探索に関する論文.
ニュートリノというのはおかしな粒子で,尋常ではなく軽い(しかしゼロではない)質量をもっている.ゼロならそれで問題なかったのだが,ニュートリノだけが(ゼロではなく)他の粒子に比べ格段に低い質量をもっている,という特殊性を(非常に極端な条件設定など無しで)説明するのは非常に難しい.それをうまく説明できる一つの解決策がシーソー機構と呼ばれるものである.

シーソー機構では,もともと(高エネルギーの対称性の高い状態)ではニュートリノも普通の粒子程度の質量をもつと考え,それが低エネルギーに落ちるときの対称性の破れにより「めっちゃ軽い粒子と,めっちゃ重い粒子に分離した」(ような感じ)と考える.
こうすると,「本来の粒子の重さ」(これは,重くなった方と軽くなったほうの両者の質量の積のようなもの)は「当たり前の重さ」に保ったまま,実際に観測されるニュートリノ(全て左巻き.一方,観測される反ニュートリノはすべて右巻き)が異常に軽いことを自然に説明できる優れたモデルである.
(片方が重くなるほどもう一方が逆に軽くなるので,シーソー機構と呼ばれる)
これを実現するにはマヨラナ質量項というものを入れてやるとよいのだが,これは同時に「粒子と反粒子が同じもの」という粒子(マヨラナ粒子)だという意味になる.
※このような粒子は,ニュートリノ以外の素粒子ではあり得ない.電荷をもつので,反粒子では電荷が反転して必ず別な粒子になってしまう.電荷をもたないニュートリノだからこそ許される.

ニュートリノ(軽くて,左巻きスピン)は(非常に小さいが)質量をもつため,速度は必ず光速以下になる.ということは,それを追い越す座標系が必ず存在する.追い越す存在から見ると,ニュートリノはスピンの向きが同じまま進む向きが逆になるので,それは反ニュートリノ(軽くて,右巻きスピン)に見えるだろう(これは,粒子と反粒子が同じものだというマヨラナ粒子だから起こることである.そうでないなら,粒子と反粒子に何かしら違うところがあるので,追い越したからと言って反粒子にはなれない).これをきちんとした物理の見方では「ニュートリノは,わずかとはいえ反ニュートリノとの混合状態とみなせる」と書くことができる.
これにより,物質中で発生したニュートリノは,(ごくわずかな成分ではあるが)反ニュートリノとして働くこともできる.
さらに,ニュートリノがマヨラナ粒子だとすると,レプトン数(=電子などのレプトンとその反粒子の数の差)を保存しない過程が可能になることが知られている.でもってさらにレプトン数の非保存からはバリオン数(=陽子などのバリオンとその反粒子の数の差)の非保存が導ける.すると,「この宇宙ってなんで反物質より通常物質の方が多いの?理論的には両者がペアで同じ数出るんでしょ?」という疑問の答えも出るかもしれない,と言われている.

そんなわけで,ニュートリノがマヨラナ粒子なのかそうではないただのディラック粒子なのかは重要な問題なわけだが,ではそれをどうやって検出するのか,というのが問題である.
その手法として注目されているのが,「二重ベータ崩壊」という核反応の観測だ.
ベータ崩壊は,中性子が陽子に変わりつつ,電子と反ニュートリノをペアで生成する.これが2つ同時に起こるのが二重ベータ崩壊なのだが,標準理論の枠組み内では起きることができるのは「中性子2個が崩壊して,陽子2個と電子2個と反ニュートリノ2個が生じる」という過程だけになる.
ところがニュートリノがマヨラナ粒子だったとすると,標準模型ではありえない「中性子2個が崩壊して,陽子2個と電子2個と反ニュートリノ2個が生じるが,生じた反ニュートリノのうち1つを普通のニュートリノとして扱って,こいつがもう一方の反ニュートリノと対消滅して消える」という過程が可能となる(マヨラナ粒子であれば,あるわりあいで粒子を反粒子をみなすことができる).
二重ベータ崩壊はごく一部の核種のみが起こすことが知られている(ただし確率はその他の核反応に比べものすごく低い).そこで,そういった核種を大量に集め,できるだけ低温に冷やしてノイズを減らし,ニュートリノレスな二重ベータ崩壊が起こるかどうか,ということを調べることにより,ニュートリノがどの程度マヨラナ質量をもつのか(=どの程度粒子と反粒子が混ざった感じなのか)を知ることが可能になる.

このような目的では例えば神岡の地下に作られた,Xeを使ったXMASSやCaを使ったCANDLESとかあるのだが,今回報告されたのは130Teを使ったCUOREである.
こいつがまたえらい装置で,5 cm角のTeO2を988個ぶら下げたトータル742 kg以上の塊全体を,12ミリケルビンぐらいの低温にして検出するという低温工学の化け物みたいな装置である.しかも通常時の温度揺らぎは0.2%という恒温っぷり.ちなみに装置の心臓部(TeO2のブロック)は
https://newscenter.lbl.gov/2017/10/23/cuore-provides-deeper-look-neutrinos/
にある
https://newscenter.lbl.gov/wp-content/uploads/sites/2/2017/10/CUORE_assembly_clean_room.jpg
が見やすい.これを12 mKってのはすごいもんだ.極低温系をやったことのある人からすれば考えるのも嫌になるような測定装置である.
しかも何がすごいって,この装置,この状態で3年だか4年だか稼働し続けた(し続けてる?)のである.
(地震等の際にスパイク状に温度が数ミリケルビン不安定化することもあるが,全体としては非常に安定している)

ではその実験の結果がどうだったのかというと,まあ,この手の装置の話を知っている方は予想できるかもしれないが,現在までに目的としたニュートリノレスの二重ベータ崩壊は確認できていない.
(ということは,理論に対する制限がさらに厳しくなった,ということではある)

そんなわけで,論文の内容というよりは,「根性入れて作った低温技術凄いな……」というものであった.

2. High-precision measurement of the W boson mass with the CDF II detector
著者多数, Science, 376, 170-176 (2022).

ここからは概要だけ.
こちらはCDF IIでとりためたWボソンの質量の測定結果を気合入れて解析したところ,標準模型での予測値からズレていることが分かった,というもの.これまでの他の実験よりかなりエラーバーが小さくなり,確かに標準模型からズレているようには見える.統計的に7σらしいんで,結構著者たち的には確証あるぞという感じなのだろうが,この手の報告はあとから「装置の問題でした」とか「もうちょっと詳しく調べたらやっぱり一致していました」などもあるので,世界の他のグループの追加実験待ちだろう.
とは言え素粒子系の物理学者達が標準模型を破るような実験結果を渇望してはや幾年,そろそろそういった実験結果が出てきてほしいところでもあるので,この結果が正しいといいなあ.

3. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors
S. S. Cheema et al., Nature, 604, 65-71 (2022).
※著者がアメリカの有名どころの大学やら国立研究所やら(あとなぜかインド)に加え,SK HynixにSamsungにIntelと商売敵がまとめて共著に入っていてなんだかすごい.

最後は実用側のものを一つ.半導体素子における次世代のゲート絶縁膜材料に関する研究.
トランジスタの小型化・高速化に伴い,ゲート絶縁膜をどんどん薄くする必要がある.ところが絶縁膜を薄く削りすぎると今度はトンネル電流などによるリーク電流が増えたり,エッチングで削る際のばらつきで素子の特性にばらつきが出るなど望ましくない.
そこで導入されたのがHigh-κ(高誘電率)材料である.誘電率が高ければ,同じ電圧をかけても素子部分への影響が大きくなるわけで,それは逆を返せばより分厚い絶縁膜で同じ動作を実現できる,ということになる.このためふたたび絶縁層を分厚くすることができ,半導体の集積度をさらに上げ続けることができたのは皆さんご存じの通り.
(最初にIntelがHfO2使うと言い出した時には,「Hfなんてそんな元素使うのかよ……」と衝撃だったもんである)

そんなわけで順調に(?)来たわけだが,微細化が進むにしたがってHfO2でもさらに絶縁層を薄くする必要が出てきて,またまた限界が見え始めてしまった.
そんなわけで現在ではHfO2よりもさらに誘電率の高い材料が探索されており,強誘電HfO2の利用などがいろいろ研究されている.
この論文では,以下の図に示すような「強誘電HfO2(単層?)で反強誘電のZrO2をサンドイッチした誘電膜」で非常に良い特性が得られた,と報告されている.
https://www.nature.com/articles/s41586-022-04425-6/figures/4

この材料を使うと,Si表面の酸化膜層を一切エッチングしなくても(=それだけ絶縁層が厚くても),現在のHfO2利用のものよりもより良い特性が出たよ,ということらしい.
材料的にも,すでに使っているHfO2とほぼ同様の手法で作れそうだし,半導体素子の微細化はもう少しは続けられそうか?

15596477 journal
日記

phasonの日記: ゲート長が1 nmを切るトランジスタの実現 2

日記 by phason

"Vertical MoS2 transistors with sub-1-nm gate lengths"
F. Wu et al., Nature, 603, 259-264 (2022).

CPUに代表される集積回路はますます微細化を進めており,トランジスタのゲート長も縮小の一途をたどっている.ゲート長を短くできればより多くの素子を集積できるだけではなく,電子が移動するのに必要な距離が短くなることからスイッチング速度的にも有利となる.
そんなゲート長であるが,そろそろ通常の微細化の限界が見えてきており,これ以上ゲート長を短くしていくとトンネル効果によるソース-ドレイン間でのリークの発生や,ドレイン側の電圧に引っ張られて障壁が下がってしまいリークが発生する可能性が指摘されている.要するに現代は,「原理的にどこまで微細化できるのか?」が現実的な問題として持ち上がりつつある状況である.なお,通常の構造では5 nmあたりが限界ではないか,という話もある(※).

※ここで言う5 nmは,ゲートの実際のサイズとしての長さであり,いわゆるCPUのプロセスルール名としての5 nmとは異なる.プロセスルール名とゲート長などの最小加工精度は一致しなくなっているので,一般的に言う「○ nmプロセス」の加工幅は〇 nmではない(たいていもっと大きい).このあたり,面倒なのでもっとちゃんと統一してほしいもんである.

5 nmの限界を超える方法のひとつが,MoS2のナノシートを用いたトランジスタだ.MoS2は単層を容易に作成できる化合物で,誘電率が低く易動度も低いことから局所的にゲートによる電場をかけることに向いた素材である.素材が薄いということは電流が流れる部分に対し均一に電場をかけられるということを意味している.厚みのある素材だと上下方向(厚み方向)で実際にかかっている電位が変わってしまうので,言ってみれば異なるゲート電圧が印加されているトランジスタが積層されているようなものになってしまう.これに対し単相のMoS2はMoを硫黄が上下から挟んだような薄層であり,厚み方向のサイズがほとんどないため素材に対し均一にゲート電圧がかかっているとみなせる.さらに誘電率も低いので,ソース-ドレイン間の電位差によるトンネル電流なども減らすことができる.
2016年に報告された素子では,極細のゲート電極として直径1 nmほどのカーボンナノチューブを用い,その上に絶縁体(ゲート電場を伝える誘電体)であるZrO2を蒸着し,その後MoS2を載せることでゲート長1 nmのトランジスタの動作に成功している.

さて,そんなMoS2だが,もっと極限までゲート長を短くしてやろう,というのが今回の論文になる.今回著者らが実現した(物理的な)ゲート長は0.34 nm.この数字を見ると気づく人もそれなりにいるのだが,何を使ったのかと言えば単層グラフェンの側面になる.グラフェンは言わずと知れた安定かつ導電性の高い単原子厚の薄層であり,その側面の幅(というか,層の厚み)は当然ながら単原子サイズで最も薄い.
多くの場合,グラフェンはその「面」を使うのだが,今回著者らは構造を工夫することでグラフェンの側面をゲート電極として使用することに成功した.どんな構造でどのように作るのかは,Fig. 2を見ていただければ一目瞭然だろう.
まずは基板となる高ドープ(=高導電性)のSiを空気中で表面酸化しSiO2の層を作り,その上にウェハースケール(と言っても3 cm四方ぐらい)のグラフェンを載せる.グラフェンの上にはさらにAlを蒸着するが,このAlの表面(グラフェンとの界面も含む)は酸化により絶縁層を形成する.このAlは,ゲート電極であるグラフェンに電圧を印加した際に,その影響が上までいかないようにするシールドの役割である(多分,グラウンドか何かに電位を落とす).その後,素子の一部を電子線で適度に削って薄くする(図中の右側の部分).削った上から誘電体であるHfO2を薄めに載せ,これまたウェハースケールのMoS2を貼り付けて,最後にソースとドレインの電極を蒸着すれば完成である.
ポイントは,ゲート電極であるグラフェンに対してMoS2が接近するのが切り立った崖の部分であるため,グラフェンの側面(=原子1層分の厚みの部分)がゲート電極として働くというところである.

実際のトランジスタとしての動作についてはFig. 3の(c)を見ていただくとわかりやすいのではないかと思うが,ゲートであるグラフェンの電位(VGr)を負に振っていくと,電子との反発によりMoS2のグラフェンに近い部分に電子が侵入できなくなり,電流値が数桁以上激減するなど,トランジスタとしての動作が確認できる.On/Off比は作成したデバイスごとに結構ばらつくが,もっともよいもので1×105に達している(Fig. 3f).

著者らはさらにシミュレーションも行っており(Fig. 4),単層グラフェンのゲート電位により実効的には4.5 nm程度のゲート長として働いていると推測している(物理的なゲート長は0.34 nmだが,電位の影響が多少周囲にまで広がるので,実効ゲート長はこのぐらいに伸びる).計算上は,もっと薄いHfO2,例えば14 nmぐらいのものを作成すれば,実効ゲート長も3 nm程度にまで縮むと予想されている.
また,MoS2の厚みに関しては,総数を上げていくと次第にスイッチング特性が悪くなるが,数層ぐらいならまあ許容範囲か,という感じである(Fig. 4g).

そんなわけで,ほぼ究極だろうという物理ゲート長0.34 nmのトランジスタの発表であった.
作成法は典型的な基板,誘電体,作成手法が確立しているグラフェンとMoS2ということで,比較的多素子化して集積回路っぽいものもそこそこすぐ作れそうな雰囲気もある.
(多素子を同時に作りこんだ場合,すべての素子の場所でMoS2がきれいに崖の壁面部分に張り付いてくれるか,というところはわからないが……)
ただ,0.34 nmのゲート長と言っても実効ゲート長は4 nm程なわけで,トランジスタの微細化はなかなか難しいものだ.

15564010 journal
日記

phasonの日記: 突然変異はランダムか? 9

日記 by phason

"Mutation bias reflects natural selection in Arabidopsis thaliana"
J. G. Monroe et al., Nature, 602, 101-105 (2022).

現代の進化論の中心に突然変異と自然選択があることは広く知られている.DNAは化学物質,光,放射線等の影響により常に損傷しており,(その損傷で運悪く細胞が死なないならば)各所でランダムな変異が発生することになる.生じた変異は,ある時は同義語への変異であり何の影響も与えず,別な場合にはアミノ酸は変化するもののたんぱく質の機能にはほとんど影響がなく,またある場合にはタンパク質の機能を大きく変えてしまったり,全く別の分子を生み出したりする.その結果が生存に大きく有利であればその変異は時とともに広がっていくであろうし,不利であれば広がる可能性は低い.
この進化論を支える基盤の一つである「突然変異」に関しては,長年,ありとあらゆる部位でランダムに起こる,ということが仮定されてきた.何せDNAを壊すような高エネルギーの過程はたいていは非選択的であるので,この過程は相応にもっともらしいと考えられる.

ところが近年,DNAやその周辺で起こっていることへの理解が深まるにつれ,DNA(より正確に言うならば,DNAとさまざまなタンパク質の複合体)というものがもっと動的に自身をコントロールしている,という事実が明らかとなってきている.
細胞は周囲の状況に応じてDNAから特定のタンパク質の情報を引き出し合成,それにより環境に対処する.いわゆる生命科学のセントラルドグマとして知られる考え方では情報の流れは一方向であり,DNAは恒久的な情報記録に用いられ,転写されたRNAである程度の情報処理が行われ,それをもとにタンパク質が製造される,とする.
しかし近年明らかとなったDNAとタンパク質の関係はもっと複雑であった.生み出されたタンパク質が必要に応じてDNA分子に修飾を加え,それにより各遺伝子の発現率などが大きくコントロールされていたのだ(エピジェネティクスと呼ばれる).つまり,DNAは自ら生み出したタンパク質により自分自身をある程度制御しており,情報の流れは一方向というよりは適宜フィードバックループが入っているようなものなわけだ.

さて,そこで突然変異である.突然変異を引き起こす過程は確かにランダムなのだが,そもそも遺伝子が変異するかどうかはその後の修復がうまくいくかに大きく依存している.DNAが損傷する頻度というのは一般に思われているよりもはるかに高く,健康な細胞が1日活動する間に数十万箇所以上の損傷が発生する.この損傷の大部分はDNA修復酵素の働きにより元通り(もしくは相同組み換えにより,機能的にはほぼ元通り)に修復されている.逆に言えば,「どのぐらいちゃんとDNAが修復されるか」が,突然変異の発生率を決める重要な要因となっている(修復が不完全で変わってしまった部分が突然変異になる).そしてDNAの修復頻度は,エピジェネティックな修飾に依存している.タンパク質によりDNAにはさまざまな「タグ付け」のようなことが行われており,各種のタンパク質はこの「タグ」を認識してDNAとの相互作用を調節している.つまり,エピジェネティックな修飾により「DNAの修復をどの程度行うか」ということも,原理的にはコントロール可能なのだ.とすると,突然変異の発生率も実はDNAの部位ごとに異なってきてもよい,ということになる.
今回の論文は,そんな観点からDNAの変異率を調べ,突然変異発生率がDNAの場所ごとに異なるらしい,ということを明らかにしたものとなる.

では論文に移っていこう.著者らが対象としたのはシロイヌナズナである.この植物はゲノムサイズが小さいこともあり非常に研究が進んでおり,遺伝子に関しては恐らく最も詳しく調べられている代表的なモデル植物だ.
さて,突然変異の発生率を調べる,と言っても,実は大きな難関が存在する.それは,「そもそも,重要な遺伝子(*)に対する変異は致命的なものになりがちなので,見た目の突然変異の発生頻度が低い」という点である.例えば,現存する生物の塩基配列を調べたとして,ある遺伝子の変異が少なかったとしよう.「その遺伝子部分の突然変異の確率が低い」という可能性もあるが,「その遺伝子に突然変異が生じるとたいてい死ぬので,生き残った生物を調べる限り見た目の変異率が低く出る」という別の可能性も否定できない.
そのあたりの区別をつけるため,著者らはTajima's Dと呼ばれる検定統計量などを用いて検証している.これはかつて東大(確か)の田嶋先生が開発した検定統計量であり,選択が働かずランダムな変異が起こっているだけ(=中立的)な場合と,変異に対し選択が働いている(=非中立的)な場合とを区別できるような検定統計量として開発された.
これ以外にも,どの系統が使えるのか,とか,どの変異部分を対象にするのか,などフィルタリングや検証がいろいろあるようだが,正直なところ専門外の人間にはもはやついていけない部分なので,興味がある方は元論文やその参考文献に当たっていただきたい.
とりあえず言っておきたいのは,突然変異自体の致死性等により見た目の相関が現れている可能性に関しては,(その妥当性などに関しては議論の余地があるかもしれないが)著者らは十分認識したうえでそれを回避すべくいろいろな手法を取ってはいる,という点だ.

*遺伝子=タンパク質を作るための情報が書かれた部分.DNAは,無数の遺伝子,発現を制御する部分,何かの残骸など無意味な配列,構造を保つための部分など数多くの配列を含む巨大分子である.コンピュータで言うならば遺伝子がサブルーチン,DNAはソフトウェア全体,というようなものだろうか.

前置きが長くなってしまったが,著者らはそうした処理により有意と思われる変異をフィルタリングし,その結果を多変数線形モデル化しさまざまなファクターの影響を抽出した.その結果からいろいろなことが分かったのだが,いくつか挙げていこう.

既知の知見と,データ解析の結果の一致をみる(本手法の妥当性を検証)
・GC含量(配列中のグアニン-シトシンペアの割合)が高いと,変異率が下がる.
・H3K4me(DNAと結合しコンパクトにたたむためのヒストンタンパクのH3K4の位置のメチル化)はDNAの安定性を上げ変異率を下げる.
・シトシンのメチル化は,その部位の変異率を上げる.

新たに見えてきた知見
・遺伝子本体の変異率は低い.つまり,タンパク質の設計図そのものの位置の変異率は低く抑えられている.
遺伝子と遺伝子の間の部分に比べると,遺伝子本体部分の変異率は58%低い.
これはエピジェネティックな修飾が遺伝子部分によく行われていること,そのような修飾がされた部分ほどDNA損傷に対する修復が促進されていることと矛盾しない.
・イントロン(mRNAに転写されるが,そこで不要な部分として削除されるためタンパク質には影響しない部分)を多く持つ遺伝子は,変異率が低い.(一見無駄に見えるので)イントロンの役割には謎な部分が多いが,もしかしたら変異率の調節に役立っている?
・線形解析から得られたモデルから「変異率を下げる」と予想されるエピジェネティックな修飾が多数なされているものには,必須遺伝子が多い.

ということで,今回の解析から予想されていることとしては,「突然変異はランダムではなくて,生存に必要不可欠な場所では起こりにくいように,細胞自身がDNAを修飾してその起こる確率を制御してるのかもよ?」ということになろうか.
(正確に言うならば,DNAの損傷自体はそこそこランダムに起こるが,修復の起こりやすさをエピジェネティクスで制御することで結果として「変異しやすい部分」と「変異しにくい大事な部分」とを分けている)
最後に著者らは,エピジェネティクスがDNA(とそれが作るタンパク質)自体によって柔軟にコントロール可能であることから,突然変異の発生率・発生個所自体が,環境変化に応じて動的にコントロールされている可能性だってもしかしたらあるんじゃないの?という感じのこともほのめかしている.
例えばの話ではあるが,厳しい環境変化が起きたときにはあえて突然変異率を上げて対応可能な種が生まれる可能性に賭けている,という可能性だってあるかもしれないわけだ.
このあたりの,まさに今伸びている研究分野はいろいろ面白いことが出てきてよいですね.

15555058 journal
日記

phasonの日記: 1000 ℃以上でもライデンフロスト効果を抑制できる表面構造の開発 1

日記 by phason

"Inhibiting the Leidenfrost effect above 1000 ℃ for sustained thermal cooling"
M. Jiang et al., Nature, 601, 568-572 (2022).

非常に高温なものをできるだけ急いで冷やしたい,というのは産業界では非常によくある状況である.そんな時に安価かつ手軽に急冷できる手段の代表例は「水をかける」というものになるだろう.とはいうものの水もタダではないし大量の水を使うのも効率が悪いわけで,少量の水を表面に勢いよく吹き付け冷却する,というような手段がしばしば用いられている.そんな冷却において問題になるのが,ライデンフロスト効果である.
ライデンフロスト効果は日常生活でも目にすることがあるのでご存じの方も多いことだろう.熱したフライパンなど十分高温な物体に液滴が触れたとき,急激な蒸発により発生した気体が液滴を包み込んでしまい,液滴への熱伝導が激減するという現象である.前述のフライパンで言えば,十分熱したフライパンに少量の水を注ぐと丸っこい水滴がフライパンの上を転がり続け,なかなか蒸発しない現象として目撃される.このとき水滴は底部から蒸発する水蒸気によって浮かんでおり,(当然少しずつは蒸発するものの)熱したフライパンに水が接触している場合と比べるとその気化する速度は非常に遅くなる.水冷されている物体の表面でライデンフロスト効果が発生してしまえば,冷却効率は(文字通り)桁違いに悪くなるため,高温の物体でどのようにライデンフロスト効果を抑制するか,というのは重要なポイントとなる.なお,このライデンフロスト効果が起こり始める温度をライデンフロスト点と呼ぶ(※場合によっては,ライデンフロスト効果が一番強くなる温度をライデンフロスト点と呼ぶ場合もあり,定義・用語の使用にやや混乱が見られる).

ライデンフロスト効果を抑制するには,液体の方に手を加える(粘性や表面張力,固体表面への濡れ性の調節)や,熱せられている物体の表面に手を加えるかの2つの方法がある.冷却液に何かを加える,という前者の手法は手軽ではあるのだが非常に高温の物体では添加物が分解したり,また大量に冷却水を使う用途ではコストもかかるし環境負荷も高い.決まった対象(例えば何度も加熱・冷却を繰り返す炉や型など)でのライデンフロスト効果の防止としては,表面加工によりライデンフロスト効果を防止する手法が望ましい.
そういった表面加工はこれまでもいくつか考案されていて,例えばサブミクロン~ミクロンレベルの細かい溝などの微細構造を作成しておくと,液滴から発生した蒸気がその溝に沿って逃げることでライデンフロスト効果を抑制できると報告されており,もともと200 ℃程度だったライデンフロスト点を570 ℃にまで上昇させることに成功している(=これだけ高い温度の表面でもライデンフロスト効果を発生させずに水冷できる).
今回の論文が報告しているのは,こう言った微細な表面構造にさらにプラスして,断熱性の高い不織布的な構造を溝部分に押し込むとさらに高温までライデンフロスト効果を発生させないことが可能で,ライデンフロスト点を1000 ℃以上にまで高めることができた,というものである.

まずは著者らの作成した構造を見ていただこう.論文のExtended Data Fig. 1にその作成法と構造の模式図が載っているのでご覧いただきたい.
まずは高温になる物体の表面に縦横に0.3 mm程度の溝を彫る(Fig. 1a).この表面部分は熱伝導性の高い物質であるので,彫った結果残った無数の柱状構造は,熱伝導性の高い高温になる柱,として振る舞う.
続いて熱伝導性の低いガラス繊維でできた不織布(Fig 1b)を用意し,これを溝を彫った表面に乗せたら物体表面の凹凸にぴったり合うように成型した樹脂を押し付け,800 ℃で焼結する(Fig 1cの左から2つ目).すると不織布が物体表面の溝部分に押し込まれた状態で固定される(Fig. 1cの左から3つめ).このとき,不織布を溝の底まで押し込みすぎない(溝の底部分に少しスペースが残っている)ことが重要である(構造はExtended Data Fig. 5がわかりやすい).これで表面加工は完成となる.
加熱された物体のこの表面に水滴が降り注ぐと,まずはガラスの不織布に水滴がしみ込む.そもそもガラスと水は親和性が高いうえに,不織布部分は熱伝導性が悪いため水によりすぐ冷却されるので,水滴は液体のまま不織布にしみ込むことができる.しみ込んだ水は不織布内を拡散し,突き出た高温の柱に接触する.高温の表面に触れた水は瞬時に気化するが,不織布の下側(溝の底の方)には空間が残っているため,水蒸気はこの溝を通って迅速に逃げることでライデンフロスト効果を防止する.濡れぞうきんを押し付けつつ蒸気を迅速に逃がす,というような構造である.

ではこの構造の威力を見ていこう.
縦横に溝を掘っただけの基板,そこに不織布を埋め込むが溝の底まで押し込んでしまった基板,今回作成した基板の3種を用意し1000 ℃に加熱,そこに水滴(見やすいように赤く着色,体積は17 μl)を落とした際の挙動が動画で紹介されている
単に溝を彫っただけの基板(左)ではライデンフロスト効果により水滴がはじかれてしまい,そのまま水滴はころころと転がっており基板の熱が水滴にあまり伝わっていないことがわかる.この場合,水滴が蒸発しきるまでにかかった時間は17秒だそうだ.不織布を底まで押し込んだもの(中央)では一部はしみ込んで沸騰することにより基板の熱を奪うが,やはり大部分はライデンフロスト効果により基板から浮いてしまっている.こちらの蒸発にかかった時間は13秒と,わずかに改善したもののやはり熱伝導は遅い.一方,今回作成された基板(右)では,水滴が不織布部分に迅速にしみ込みながら沸騰しており,熱を効率的に奪っていることがわかる.こちらでは水滴が揮発するまでの時間はわずか0.33秒と,ただの溝に比べ50倍以上の速度で熱を奪っている.
続いては同様の実験を液体窒素で行った動画だ.こちらは室温(30 ℃)の単なる溝(左),室温(中央)および1000 ℃(右)の今回の構造での比較となる.ただの溝では液体窒素がライデンフロスト効果により浮いてしまっておりなかなか揮発しないのに対し,今回作成した構造では基板から急激に熱を奪い一気に気化していく様子がわかる(1000 ℃ではさすがに沸騰が激しすぎて飛び跳ねてはいるが).

ではこの構造でどのぐらいの温度までライデンフロスト効果を抑制できるのか,だが,著者らは温度を変えながら水滴が揮発するのにかかる時間を測定しており,その結果不織布部分が融解してしまう直前の温度である1150 ℃まで効果を発揮することを報告している(Extended Data Figure 3).グラフの縦軸は液滴の寿命であり,値が大きいほど液滴に熱が十分伝わっていない=うまく冷却でいないことを意味している.既知の構造では温度が上がるとあるところで液滴寿命が一気に増加するところが見受けられる(例えば黒い■のデータは,300 ℃前後から値が増加していく).これはある温度以上でライデンフロスト効果により水滴が浮いてしまい,基板の冷却がうまくいかなくなっていることを示す.
それに対し今回の構造(赤●)では,温度が増加しても液滴寿命は延びず,1150 ℃まで低い値(=十分に熱を奪っている状態)を保っている.

実際に十分に熱した物体の冷却を行ってみた様子がSupplementary Video 3になる.左は単に縦横に溝を彫っただけの鉄の基板(40×40×10 mm3),右は同じサイズの鉄の基板の表面に今回の構造を作りこんだものになる.左の試料は水を滴下しても水滴がはじかれてしまいなかなか冷えないのに対し,右の試料ではみるみる温度が低下していく様子がわかる.

今回の構造は,比較的安価に作成することも可能である.著者らがExtended Data Fig. 9で示しているように,放電加工機を用いることである程度の面積に一気に溝を彫ることが可能であるし,曲面に溝を作成することもできる(型彫り放電加工でも行ける気はする).
高温物体の冷却で実際にどのぐらいライデンフロスト効果が問題になっているのかはちょっと専門外なのでわからないが,興味深い研究である.

typodupeerror

ナニゲにアレゲなのは、ナニゲなアレゲ -- アレゲ研究家

読み込み中...